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Exact Sparse Approximation Problems via
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Abstract—Sparse approximation addresses the problem of
approximately fitting a linear model with a solution having as few
non-zero components as possible. While most sparse estimation
algorithms rely on suboptimal formulations, this work studies the
performance of exact optimization of -norm-based problems
through Mixed-Integer Programs (MIPs). Nine different sparse
optimization problems are formulated based on or data
misfit measures, and involving whether constrained or penalized
formulations. For each problem, MIP reformulations allow exact
optimization, with optimality proof, for moderate-size yet difficult
sparse estimation problems. Algorithmic efficiency of all formula-
tions is evaluated on sparse deconvolution problems. This study
promotes error-constrained minimization of the norm as the
most efficient choice when associated with and misfits, while
the misfit is more efficiently optimized with sparsity-constrained
and sparsity-penalized problems. Exact -norm optimization
is shown to outperform classical methods in terms of solution
quality, both for over- and underdetermined problems. Numerical
simulations emphasize the relevance of the different fitting
possibilities as a function of the noise statistical distribution. Such
exact approaches are shown to be an efficient alternative, in mod-
erate dimension, to classical (suboptimal) sparse approximation
algorithms with data misfit. They also provide an algorithmic
solution to less common sparse optimization problems based on
and misfits. For each formulation, simulated test problems are
proposed where optima have been successfully computed. Data
and optimal solutions are made available as potential benchmarks
for evaluating other sparse approximation methods.
Index Terms—Deconvolution, mixed-integer programming,
-norm-based problems, optimization, sparse approximation.
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I. INTRODUCTION

A. Sparse Estimation for Inverse Problems

T HE problem of sparse representation of data in
a dictionary consists in finding a solution
to the system with the fewest non-zero compo-

nents, i.e., with the lowest sparsity level. In sparse approxima-
tion, in order to account for noise and model errors, the equality
constraint is relaxed through the minimization of the data misfit
measure , where generally stands for the standard
Euclidean norm in . Such sparsest representation and ap-
proximation problems are essentially combinatorial. Finding the
best -sparse solution (the solution with non-zero compo-
nents) is usually considered too difficult in practical large-scale
instances. Indeed, the brute-force approach that amounts to ex-
ploring all the possible combinations, is computation-
ally prohibitive. In the abundant literature on sparse approx-
imation, much work has been dedicated to the relaxation ap-
proach that replaces the -“norm” sparsity measure,

, with the norm . Many
specific convex optimization algorithms have been proposed in
the past decade, see for example [1], [2]. In addition, conditions
were established for which both the and the relaxed prob-
lems yield the same solution support (the set of non-zero com-
ponents). These mostly rely on a low sparsity level assumption
and on structural hypotheses on the matrix , such as low cor-
relation of its columns (see [1] and references therein). Alterna-
tively, greedy algorithms build a sparse solution by iteratively
adding non-zero components to an initially empty-support solu-
tion [3]–[5]. More complex forward-backward methods [6], [7]
may show better performance in practice but with higher com-
putation time. Tree-search-based methods also try to improve
the classical greedy algorithms using heuristics to reduce the
complexity of exhaustive combinatorial exploration (see e.g.,
[8] and references therein). Other support exploration strategies
maintain the desired sparsity level at each iteration, and perform
local combinatorial exploration steps [9]. Optimality proofs for
all such strategies also rely on very restrictive hypotheses [10],
[11]. More “ -oriented” approaches were proposed, e.g., by
successive continuous approximations of the norm [12], by
descent-based Iterative Hard Thresholding (IHT) [13], [14] and
by penalty decomposition methods [15]. However, without ad-
ditional assumptions on , one can only prove that the solution
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found is a local minimum of the optimization problem. More-
over, for IHT, optimality conditions suffer from the same re-
strictions as the aforementioned greedy methods [13], [14].
In many inverse problems, the model results from

the discretization of an intrinsically continuous physical model.
A typical example is sparse deconvolution, where models
the convolution of a spike train (in one-dimensional signals) or
of point sources (in imaging problems) by the impulse response
of the acquisition device [7], [16], [17]. A similar problem con-
cerns nonlinear parameter identification, where parameters are
discretized on arbitrarily thin grids [7], [18], [19] and estimation
amounts to finding a sparse solution to a linear problem of high
dimension. In such cases, the columns of can be highly corre-
lated, so no optimality guaranty can be obtained for greedy and
-norm-based methods. Similar problems also arise for vari-

able selection in machine learning and statistics [6], where the
set of features (the columns of ) is not designed to satisfy any
recovery property.
The aforementioned problems essentially focus on the cor-

rect estimation of the support of . In deconvolution, for ex-
ample, support identification corresponds to detection and lo-
calization of the sources. Since the true sparsity measure is in-
deed the norm, a global optimum of -based formulations
is more likely to yield exact support identification than approxi-
mate solutions. Consequently, our interest focuses on optimiza-
tion methods for -norm-based criteria providing global opti-
mality guarantees. Such exact approaches are usually discarded,
based on the argument that sparse optimization problems are
NP hard [20]. It is also commonly considered that exact opti-
mization amounts to combinatorial exploration of all possible
supports, which is nothing but a worst-case-scenario argument.
Note however that, in order to reduce the number of explored
supports, Tropp and Wright [1] mentioned the possible use of
cutting-plane methods, which are one of the basic elements of
resolution of themixed-integer programs explored in the present
paper.
Here, we focus on sparse optimization occurring in certain

inverse problems with moderate size yet with a complexity
sufficient to make the usual methods fail in estimating the
sparsest solutions. Examples include spike train deconvolution
in ultrasonic nondestructive testing (NDT) [16] or Geophysics
[17], sparse hyperspectral unmixing [21], and spectral analysis
with short data sets [22]. A first objective of this contribution
is to show the viability of exact resolution approaches for such
problems.

B. Global Optimization via Mixed-Integer Programming

We focus on Mixed-Integer Programs (MIP), that is, opti-
mization problems involving both continuous and integer vari-
ables. Such problems are well suited to -norm-based opti-
mization, since the norm naturally introduces a binary de-
cision variable for each component (zero or non-zero?). In this
paper, MIP refers to the minimization of linear or quadratic cri-
teria subject to linear or quadratic inequality constraints. It is
commonly claimed that, in the past fifteen years, a factor
was gained in the required computing time for solving such
problems. This gain is due in (roughly) equal parts to (i) hard-
ware improvement, (ii) progress in the resolution of linear pro-

grams, and (iii) implementation efficiency of advanced mathe-
matical techniques [23]. Therefore, as it will be shown in this
paper, some exact approaches can now be advantageously used
to address the moderate-size, yet difficult, applications enumer-
ated at the end of Section I.A.
To our knowledge, the first MIP reformulation of a sparse

optimization problem is proposed in [24]. However, the authors
argue that the assumption that is upper bounded, which is
required for the MIP reformulation, leads to computational in-
efficiency. Therefore, they choose to consider only a related
problem: the maximum feasible subsystem problem, for which
exact solutions could be found only for very small instances
( ) and no result is given concerning the
MIP approach. A similar formulation with binary variables ap-
pears in [25], but binary variables are replaced by continuous
variables in [0,1] in order to yield a convex problem, which
is obviously not equivalent to the original one. In [26], some
exact and approximate reformulations of -based problems are
surveyed. The authors deplore the inherent combinatorial diffi-
culty of such MIP problems but no practical result is provided.
Finally, in [27], noise-free sparse representation problems are
formulated as MIP. Here, we address the noisy case, which
opens perspectives to different possible formulations of the op-
timization problem. Establishing MIP reformulations for such
problems, studying their computational efficiency, investigating
properties of optimal solutions and comparing them with the re-
sults of standard methods are the core of this paper.

C. Objectives of the Paper

This paper shows that different possible reformulations of
sparse approximation problems can be tackled by MIP solvers.
Sparse approximation is intrinsically a bi-objective optimiza-
tion problem, where both the sparsity measure and the data
misfit measure are optimized. In inverse problems, it is usually
formulated through the optimization of a weighted sum of the
two terms. However, constrained formulations (involving one
criterion to be minimized and the other subject to a constraint)
may also be well suited to MIP reformulations, which are con-
strained programs by nature. Therefore, we study the efficiency
of MIP solving techniques applied to the following three formu-
lations:
• minimize the norm under a bounded-data-misfit con-
straint,

• minimize the data misfit under an -boundedness con-
straint,

• minimize a weighted sum of the two criteria.
Additionally, we consider non-quadratic data misfit mea-
sures, which may be appropriate if the error term
is non-Gaussian. Moreover, piecewise-linear alternatives to
the norm , may also prove to be more
attractive computationally, because MIP solvers essentially
rely on the resolution of linear subproblems. In particular, the

and norms are easily linearized;
formulations based on those norms naturally boil down to
optimization problems involving linear inequality constraints
or linear objective functions. Therefore, we also consider for-
mulations involving and misfits, for which much fewer
algorithms have been proposed.
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Our work establishes MIP reformulations of nine different
sparse approximation problems, which are all evaluated in terms
of computational efficiency, depending on the sparsity level and
on the noise level. Then, these formulations are compared in
their ability to identify the exact support in the presence of
noise, depending on the noise statistical distribution. Our ex-
perimental results additionally show that the classical methods
are far from reaching acceptable results in such cases, whereas
solving the -norm formulations do yield more satisfactory so-
lutions—but with much higher computing time. Note that ex-
periments in both [24] and [27] involve randommatrices, which
are more likely to satisfy the conditions ensuring the optimality
of -norm-based and greedy approaches. In most ill-posed in-
verse problems, the columns of are highly correlated, so that
such conditions certainly do not hold.
The remainder of the paper is organized as follows.

Section II introduces nine optimization formulations of the
sparse approximation problem, and discusses their statistical
interpretation and the structure of the solution sets. MIP
reformulations are established in Section III. Then, basic el-
ements concerning the resolution of MIP problems are given
in Section IV. Experimental results in Section V are dedicated
to the evaluation of computational costs. Section VI compares
the solutions obtained through MIP optimization with those of
classical sparse approximation algorithms, on both overdeter-
mined and underdetermined sparse deconvolution problems.
Simulations in Section VII evaluate the support identification
performance of -misfit-constrained formulations as a func-
tion of and of the noise statistical distribution. Finally, a
discussion is given in Section VIII.

II. SPARSE OPTIMIZATION PROBLEMS

In sparse approximation, both the sparsity of the solution and
the fidelity of its corresponding data approximation are opti-
mized. Therefore, the generic sparse approximation problem,
which we are interested in, is the following unconstrained bi-ob-
jective optimization problem:

(1)

where is either 1, 2 or . This section presents nine formula-
tions of this problem and discusses their statistical interpretation
and the structure of the sets of solutions.

A. Taxonomy
Various mono-objective optimization problems can be

formulated to address the bi-criterion problem (1). For
, the bounded-error problems read

and the sparsity-constrained problems read

where and are user-defined threshold parameters. Finally,
the penalized problems read

where and are user-defined penalty parameters.

In this paper, we propose a reformulation of each of these
problems as MIPs. To the best of our knowledge, is the
only sparse approximation problem for which a MIP reformu-
lation is mentioned [24]. Remark that the sparse representation
case (noise-free data), which was recently tackled via MIPs in
[27] with equality constraint , is the special case of

with set to 0, for which and are ob-
viously equivalent. Recall that the sparsity-based inverse prob-
lems considered here are sparse approximation problems: data
are always contaminated by measurement noise and the model
may be inexact, so that .
Choosing one of the nine formulations and the value of the

parameter ( or ) amounts to selecting some particular
solution among the wide variety of Pareto-optimal solutions of
problem (1). Note that, for a given misfit, no equivalence be-
tween the three problems and can be obtained
because the norm is not convex. In particular, solutions in
the non-convex part of the Pareto frontier cannot be reached by
solving the penalized formulation [28].

B. Statistical Interpretations and Parameter Tuning
In practice, one has to choose one among the nine optimiza-

tion problems and must set a value for the corresponding pa-
rameter. Such choices can be based on statistical arguments.
The data-misfit measures, with , can be in-

terpreted in terms of likelihood functions. Let be the statis-
tical distribution of the additive noise term . The
likelihood function is defined as: . If
noise samples are independent and identi-
cally distributed (i.i.d.) according to a centered Gaussian distri-
bution, then is proportional to up to
an additive constant. Similarly, is proportional to

(up to an additive constant) if are i.i.d. according
to a centered Laplace distribution. Such a heavy-tailed distribu-
tion assumptionmay be appropriate in the presence of impulsive
noise [16], [29]. The misfit is connected to an i.i.d. uniform
noise distribution assumption. Suppose that is uniformly dis-
tributed on , for some given . Then, the likelihood
function is constant for any such that , oth-
erwise it is zero. Consequently, is a
maximum-likelihood estimator if noise samples are uniformly
distributed on , for any [30, Ch. 7.1]. In
this case, which arises for example when accounting for quanti-
zation noise, data fitting may be a relevant choice—see [31]
for both theoretical and numerical arguments.
Consequently, is a sparsity-constrained maximum

likelihood estimation problem with the aforementioned corre-
sponding noise distribution assumption. In a Bayesian setting,

defines a Maximum A Posteriori (MAP) estimate, where
the term results from a Bernoulli-Gaussian prior model
with infinite variance Gaussian distribution [7]. Note that,
within such a MAP interpretation, solving reduces
to solving . Indeed, since is constant if

and equals otherwise, minimizing
amounts to minimizing subject to

. Finally, considers a maximal tolerance
on the approximation error and cannot be interpreted as a
maximum likelihood or MAP estimation problem.
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The choice of the formulation also depends on available prior
information about the considered practical problem. If reason-
able bounds on the acceptable approximation error can be in-
ferred, e.g., from the knowledge of the signal-to-noise ratio or
from a desired approximation quality, then may be pre-
ferred. In particular, the parameter can be fixed according to
the statistics of , which can be obtained for any noise distri-
bution (analytically or numerically). If the sparsity level is fixed
or can be upper bounded, e.g., in a compression context, then

may be appropriate. In , the parameter trades off
between the noise level and the sparsity level. With the previous
MAP interpretation, for , it is an explicit function
of the noise variance and of the rate of non-zero values in the
Bernoulli process. Therefore, tuning requires more informa-
tion than tuning the parameters of the two other formulations.
When too little prior information is available, a practical solu-
tion consists in computing optimal solutions corresponding to
different parameter tunings—whatever the considered formula-
tion—and then selecting a posteriori the most appropriate one,
according to some expert supervision or to model order selec-
tion criteria [32].

C. Structure of the Solution Sets

We investigate hereafter the structure of the solution sets of
the different problems, for fixed values of the corresponding
parameters and . In the following, an optimal support
refers to a set of indices which supports at least one optimal
solution. The norm is a piecewise constant function, where
each value is attained on a finite number of supports. Hence, for
any problem defined in Section II.A, the set of minimizers
can be defined as the finite union of sets of minimizers on each
optimal support: if denotes the set of optimal supports, then:

where denotes the restriction of problem to the support .
Let us characterize the solution set of . We assume that

the sparsity level of all solutions is lower than and that the
matrix satisfies the Unique Representation Property (URP)
[33], that is, any columns of are linearly independent.
For any supported by is constant, hence and

are solved by minimizing , where (re-
spectively, ) collects the non-zero components in (respec-
tively, the corresponding columns of ). Thanks to the URP,

has full column rank and, for admits a unique
solution (the least-squares solution). Consequently, the solution
sets of and are both (finite) unions of singletons.
The norms for and are not strictly convex,
therefore one can only claim that is at-
tained on a convex set, such that lies in an -sphere in
dimension , centered at . Consequently, for and

, the solution sets of and are (finite) unions
of convex sets of the form . Now,
consider the solution set of , which is formed by all vec-
tors such that . In the particular case
where , it comes from the previous
arguments that the solution set is a singleton for , and

a convex set for and . But, in the most fre-
quent case where , the solution set

is such that lies in an -ball
of dimension , centered at , and the solution set of is
a finite union of such sets. Consequently, for a given , the so-
lution set of is generally “larger” than the solution sets of

and . In particular, the minimizers of these last two
problems may be unique. For example, with some additional
assumptions on the data and on the matrix , the solution of

is unique [34]. On the contrary, the minimizer of is
certainly not unique, except in very specific cases.

III. MIXED-INTEGER REFORMULATIONS

In this section, we establish the reformulations of opti-
mization problems and for ,
as Mixed-Integer Linear Programs (MILPs), Mixed-Integer
Quadratic Programs (MIQPs) or Mixed-Integer Quadratically
Constrained (linear) Programs (MIQCPs).

A. Definitions of MILP, MIQP and MIQCP

The general form of an MILP is

where is the vector of optimization variables;
defines the linear objective function;

and define the inequality
and equality constraints; and are respectively the
vectors of lower and upper bounds of the optimization variables;
is the index set corresponding to the components of that are

constrained to be integer-valued.
An MIQP has the general form:

where is a matrix.
Finally, the form of an MIQCP that is of interest in this paper

is:

where is a matrix, and .

B. Equivalent Reformulation Techniques

We now present standard reformulation techniques that en-
ables to express each of the nine optimization problems intro-
duced in Section II.A as an MILP, an MIQP or an MIQCP,
without any approximation.
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1) Boundedness Assumption and “Big- ” Reformulation of
the Norm: For each , let us introduce an
additional binary optimization variable , such that

(2)

Then, the non-linear sparsity measure is equal to the linear
term , where is the -dimensional all-ones
column vector. The logical constraint (2) must however be
translated into (in)equality constraints compatible with MIP,
ideally through linear constraints. One standard way to achieve
this (see e.g. [24], [27]) is to assume that a solution of the
problem under consideration satisfies the following constraints
for some sufficiently large pre-defined value :

(3)

This assumption supposes that the problem admits bounded op-
timal solutions, which is not restrictive in our practical applica-
tions. The parameter has to be large enough so that

at any desirable optimal solution . On the other hand, the
bound must be as tight as possible in order to improve com-
putational efficiency; therefore tuning the value of parameter
may be a critical issue [24]. In the problems addressed in this
paper, satisfactory results are obtained with a rather simple em-
pirical rule discussed in Section V.B. Note that specific lower
and upper bounds for each component could also be advan-
tageously considered [27] if corresponding prior information is
available.
The reformulations of -norm-based constraints and objec-

tive functions are obtained through the two following respective
lemmas.
Lemma 1: Considering the boundedness assumption (3),

Proof: The implication is straightforward by consid-
ering defined by (2). Now, let satisfy and ,
and suppose . From , one has
, that is, . Hence for at least

indices , which contradicts . Consequently,
.
Lemma 2: Considering the boundedness assumption (3),

where represents the feasible domain of the problem under
consideration.

Proof: Similar to that of Lemma 1.
Such a reformulation technique is commonly referred to as

“big- ” reformulation. Remark finally that another reformula-
tion of the cumbersome logical constraint (2) consists in intro-

ducing the equality constraint . However, the
latter is a bi-linear constraint, typically less interesting in terms
of computation time for off-the-selfMIP solvers than linear con-
straints [35].
2) Reformulation of the Data Misfit Measure: The

misfit term can be written linearly as ,
with additional constraints ,
where denotes the th row of . Then, these constraints can
be relaxed (exactly) by the linear inequalities:
, with column vector , thanks to the two

following lemmas.
Lemma 3:

Proof: Let . The following optimization
problems are equivalent:

Indeed, is trivial. In order to show that ,
one can simply remark that if an optimal solution of

is such that for some index , then one
can straightforwardly construct a better feasible solution for ,
which yields a contradiction.
Lemma 3 will be used to obtain a MIP reformulation of

and , which involve the -misfit term in the objective
function. For , which involves the -misfit term as a con-
straint, we use the following lemma:
Lemma 4: Let solve the optimization problem:

Then, is a solution of .
Proof: Suppose that solves and let

. Then, and
is a solution of:

Indeed, since is a relaxation of —the feasible set of is a
subset of that of —, its optimal value, , is a lower bound
for the optimal value of . The solution is clearly
feasible for and it attains the lower bound . Hence,
it is optimal for . Finally, is clearly equivalent to .
Let us remark finally that problems and are not strictly

equivalent because they are not minimized by the same couple
of vectors , but they share the same solution set for .
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TABLE I
MIXED-INTEGER PROGRAMMING REFORMULATIONS OF NINE SPARSE APPROXIMATION PROBLEMS

3) Reformulation of the Data Misfit Measure: nat-
urally brings linear inequality constraints as

For both and , involving the norm in the ob-
jective function, one can simply introduce an additional scalar
variable such that minimizing amounts to mini-
mizing under the constraints

Here again, one can easily show that an optimal solution of the
original problem will necessarily satisfy .

C. Mixed-Integer Programming Reformulations

Given the reformulation techniques of Section II.B, the nine
problem reformulations proposed in Table I are straightforward.

IV. MIP RESOLUTION: BASIC ELEMENTS

Mixed-integer programming problems are not easy problems.
MILP problems are already NP-hard [36]. As a consequence,
reducing sparse approximation problems to MILP, MIQP or
MIQCP problems does not per se reduce the complexity.
Nevertheless, such MIP reformulations not only open up possi-
bilities to prove the optimality (or quantify the sub-optimality)
of solutions, but also allows one to benefit from decades of
exponential progress in terms of required computing time to
solve a given MIP problem. This progress does not simply
reflect the doubling of computing power every 18 months,
it is also a consequence of fast progress in both the theory
and practice of linear programming and discrete optimization
(duality, numerical linear algebra, interior-point methods,
semi-definite positive relaxations, branch and bound/cut/price
methods, decomposition approaches, global optimization,
etc.) Once the sparse approximation problem is recast as a
MIP problem, then state-of-the-art off-the-shelf software can
be used, such as BARON, COUENNE, CPLEX, GloMIQO,
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GUROBI, MOSEK or Xpress-MP—see for example [35] and
references therein. We chose to use CPLEX [23] because it is
unanimously considered among the best MIP solvers. CPLEX
has been developed over the last thirty years and includes the
best strategies developed by the MIP community. Moreover, it
is freely available for research and teaching purposes.
The main method behind the CPLEXMIP solver is a branch-

and-cut algorithm. Globally, it implements a branch-and-bound
strategy (i.e., a tree-structured implicit enumeration algorithm)
based on successive continuous relaxations of the integer vari-
ables [37]. Each branch generates a subproblem by fixing some
integer (in our case, binary) variables, and a set of branches is
constructed corresponding to the different possible configura-
tions of such variables. Then, the aim is to discard (huge) parts
of the remaining combinatorial tree by lower bounding the ob-
jective function on the corresponding subproblems. To obtain
such lower bounds, a continuous relaxation of each subproblem
is formed by relaxing the integer variables. Linear constraints,
such as Gomory cutting planes [38], are added to each gener-
ated (continuous relaxation) subproblem, so that the continuous
solution converges to an integer solution. Such cutting planes
remove parts of the feasible domain of the subproblem that does
not contain any integer solution. This approach amounts to at-
tempting to construct the convex hull of the set of integer fea-
sible solutions of each subproblem. CPLEX incorporates sev-
eral techniques in order to improve performance, such as con-
straint propagation techniques [39], linear algebra techniques
[23] and heuristic techniques to find rapidly a good integer so-
lution. Doing so, parts of the research space are eliminated only
if it is proved that they do not contain the global minimum.
The best current integer solution provides an upper bound of

the global minimum of the entire problem. The solution of the
current relaxed (continuous) subproblem gives a lower bound
of the global minimum of the current subproblem with integer
constraints under consideration. The worst solution of all
relaxed subproblems—the one that achieves the lowest lower
bound—gives a certified lower bound of the global minimum of
the entire problem. If such a lower bound is attained by the best
current integer solution, then a global minimizer is found and
optimality is proved. Otherwise, the entire process is iterated by
creating new branches. The algorithm converges towards such
a certified optimum in a finite number of steps. If the solver
reaches the time limit, the duality gap (the difference between
the best solution found and the certified lower bound of the
global minimum) provides a measure of sub-optimality of the
solution found. Note that tree-search based greedy algorithms
such as in [8] also rely on tree-based (local) exploration and
on lower-bounding the objective function on sets of solutions,
which is used inside a greedy procedure. Therefore, they do not
come with any optimality guarantee.
Remark that in most sparsity-inspired signal processing prob-

lems, the matrix satisfies specific properties that are exploited
for efficient computations. In particular, if represents a re-
dundant set of transforms based on multi-scale representations
such as wavelets [40], matrix-vector products and
(where is some given vector of an appropriate dimension) can
be computed by fast algorithms using Fast Fourier Transforms
(FFT). In 1D (respectively, 2D) deconvolution problems, is a

Fig. 1. Example of sparse deconvolution data. Left: impulse response. Right:
7-sparse sequence (circles) and noisy convolved data , with dB.

Toeplitz (respectively, Toeplitz-block-Toeplitz) matrix, so that
matrix-vector products can also be computed by FFT. No such
matrix structure is exploited within the standard mixed-integer
optimization algorithms, as they are implemented through
general-purpose MIP solvers. The only matrix property that
is exploited here is the possible sparsity of the matrix to
compute fast vector products. This is particularly the case for
the finite impulse response (FIR) deconvolution problems that
are considered hereafter.

V. EXPERIMENTAL RESULTS: OPTIMIZATION PERFORMANCE

This section presents the test problems and the computational
framework. Then, the computational efficiency of the nine MIP
reformulations is studied.

A. Definition of Test Problems

The different MIP reformulations are evaluated on one-di-
mensional sparse deconvolution problems. Such problems are
typically encountered for example in ultrasonic NDT [16] and
in seismic reflection in Geophysics [17]. In the following, is a
-sparse sequence in (i.e., ), with uniformly dis-

tributed spike locations, where the sparsity level, , is varying.
In order to avoid arbitrary small spike values, each non-zero am-
plitude is drawn as , where is a centered Gaussian
sample with unit variance. The matrix is the discrete convo-
lution matrix corresponding to the 21-sample impulse response
shown in Fig. 1 (left). With the boundary assumption that
is zero outside its domain, is a 120-sample signal (i.e.,

). White noise is added with variable signal-to-noise
ratio (SNR). In this section, noise samples are generated ac-
cording to a centered normal distribution , with such
that . We name such prob-
lems . Note that they are slightly overdetermined

, whereas typical sparse approximation problems deal with
largely under-determined systems. However, trivial inversion is
not satisfactory here, because of the presence of noise and of the
ill-conditioned nature of .
We consider problems SA with varying between 5 and

11, and SNR varying from (noise-free data) downto 10 dB.
One example of data is given in Fig. 1 (right) for and

dB. It illustrates the difficulty of sparse deconvolu-
tion problems arising for example in ultrasonic NDT [16]. The
oscillating impulse response and the proximity of the spikes pro-
duce overlapping echoes in the available data. As the echoes
cannot be distinguished visually, numerical techniques are re-
quired. All data and optimization results of this section are avail-
able online as supplementary multimedia material.
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TABLE II
CPU TIMES (IN SECONDS) OBTAINED BY THE NINE MIP REFORMULATIONS, AS A FUNCTION OF THE SIGNAL-TO-NOISE RATIO (SNR) AND OF THE SPARSITY
LEVEL (K), AVERAGED OVER 50 INSTANCES OF EACH PROBLEM. THE FIRST NUMBER INDICATES THE CPU TIME FOR ESTABLISHING OPTIMALITY OF THE
SOLUTION. THE SECOND NUMBER GIVES THE CPU TIME AT WHICH THE CORRESPONDING OPTIMUM WAS FOUND. NUMBERS IN PARENTHESES COUNT THE
INSTANCES FOR WHICH OPTIMALITY WAS NOT PROVED IN LESS THAN 1000 SECONDS. FOR REFERENCE, THE COMPUTATION TIME OF CLASSICAL SPARSE

APPROXIMATION ALGORITHMS ON OUR HARDWARE CAN BE FOUND IN FIG. 2

B. Machine Configuration and Implementation Details
Optimization is run with IBM ILOG CPLEX V12.6.0 from

a Matlab interface on a computer with eight Intel Xeon X5472
processors with Central Processing Units (CPU) clocked at
3 GHz. The maximum time allowed for each resolution is set
to s. The other CPLEX parameters are set to
their default value. For each problem, the “big- ” constant
is set to , where
corresponds to the maximum amplitude of 1-sparse solutions
estimated by least-squares. If the boundedness assumption (3)
is saturated—i.e., one component in the solution reaches the
value or —then the optimization is successively run
again with replaced with , until the obtained solution
satisfies . The CPU times given below include
such restarts. With this heuristic strategy, in our simulations,
only few cases led to such saturation: no restart was necessary
in 90% of the cases, and the average number of restarts in the
other cases was approximately 1.6.

C. Evaluation of Computational Costs
Each of the nine MIP reformulations of Table I is run for fifty

random instances (for both spike distributions and noise realiza-
tions) of each problem. In this section, in order to ensure
a fair comparison (in terms of computational efficiency), the pa-
rameters are set to the true sparsity level , and parameters

and are set by trial and error, until the sparsity level of
each solution equals . Note that in our case, the matrix has
full column rank, hence inequality constraints in will
yield the same results as if they were equality constraints. That
is, when imposing , all the columns of matrix
contribute to the reduction of the data misfit. However, formula-

tions with inequality constraints yielded lower computing times.
Sparse representation problems (noise-free data, )
are addressed through for , with threshold

. Remark that in the noise-free case, no sparsity-en-
hancing algorithm is indeed necessary, since the solution can
simply be computed by least squares.
Average CPU times obtained for MIP reformulations are

given in Table II. The figures on the left-hand side of each
column is the time required to prove the global optimality of the
solution found. The figures on the right-hand side indicate the
time after which the support of the solution was found, which
is generally much lower. The figures in parentheses indicate
the number of instances for which optimality was not proved
within 1000s.
All CPU times increase with the sparsity level , but also

with the noise level. In particular, for dB and
, for each formulation, optimality of the solutions was ob-

tained in less than 1000s only on a fraction of the fifty instances.
In order to explain such behavior, let us remark that the sparsity
level (respectively, the noise level) increases the size of the fea-
sible domain of (respectively, of ). More generally,
for all problems, if either the sparsity level or the noise level
increases, then the branch-and-bound strategy becomes less ef-
ficient in discriminating between concurrent candidates and in
eliminating some of them.
With dB, the lowest CPU times are achieved by

solving . When the noise level increases, solving
and problems becomes more efficient computationally,
and their superiority over other problems increases with both
the sparsity level and the noise level. In particular, prob-
lems were always solved exactly in less than 1000s, except
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for ( dB, ). Results are slightly not as
good for , where optimization did not terminate within
1000s for three instances with dB and .
Note that even a small amount of noise severely degrades
the resolution performance of problems . Optimization
of , the only problem with a quadratic constraint, is
the most time-consuming among all proposed formulations.
Non-linear constraints are known to make the MIP really
difficult to solve [35]. An element of explanation can be found
by comparing the Lagrangians of formulations involving
misfits. Indeed, the Lagrangian of contains trilinear terms.
On the contrary, the Lagrangians of and of are
quadratic functions. Therefore, optimizing a linear function
under quadratic constraints is more complex than optimizing a
quadratic function under linear constraints.
For any , solving problems generally

performs better than solving problems at high SNR. On
the contrary, as the noise level increases, sparsity-constrained
formulations outperform penalized versions. For both formula-
tions, which involve the data misfit in the objective function,
using an misfit measure is the most efficient choice, and both
- and -misfit optimizations behave similarly.
We also note a high dispersion of the required CPU times

among the fifty realizations of each problem. For example, the
average time for the resolution of on problems was
approximately 11s on forty-eight instances, whereas optimiza-
tion did not terminate after 1000s on the two other instances.
We also remark that, for , optimality was not proved within
1000s for two instances of the simplest test problem .
Two other instances of also required a much higher CPU
time than the others, which leads to an atypically high average
time of 53s, reflecting once again the difficulty of the quadrati-
cally-constrained problem .
Finally, let us evaluate the CPU time of exhaustive com-

binatorial exploration for . Using notations introduced
in Section II.C, for a given support with components,
the minimizer of has the closed-form expression

. Then, the least-squares misfit value is
computed by: . In practice,

can be computed by performing Cholesky decomposition
of , so that one computation of the objective function
mainly amounts to two triangular inversions. The
CPU time, denoted , of one such computation is estimated
by averaging over inversions. Then, neglecting the cost
of Cholesky factorizations, the cost for testing all -sparse
solutions is extrapolated as . It yields approximately
1500s for , 4 days for , and more than one
year for . Problems based on both and misfits
require the resolution of a linear program for each support,
therefore the corresponding exhaustive search yields still
higher computational costs than in the case. Consequently,
exhaustive search cannot be considered as a practical solution,
even for such moderate-size problems. In order to emphasize
the ability of the MIP solver to remove important parts of the
full combinatorial tree search, we give a last indicator. For
with dB and , for which all instances were

successfully solved, the average number of combinations that
were explicitly considered in the branch-and-bound procedure
is about , to be compared with the total number of

combinations.

VI. EXPERIMENTAL RESULTS: EVALUATION OF SOLUTIONS

We now compare the solutions obtained via MIP optimiza-
tion with those of classical sparse approximation methods: Or-
thogonalMatching Pursuit (OMP) [5], Single Best Replacement
(SBR) [7], Iterative Hard Thresholding (IHT)1 [13], [14] and the
minimization of the -norm-penalized least-squares criterion
( -relax) using homotopy continuation [41]. All algorithms are
tuned so that all solutions have the correct number of spikes.
Therefore, all methods are put in a favorable setting for evalu-
ating their ability to retrieve the correct support of the solution.
Recall that for sparse deconvolution, none of the classical

methods are theoretically guaranteed to solve the -norm
problem. As seen in the previous section, the MIP approach can
compute an exact solution, but requires a larger computation
time. In order to evaluate intermediate solutions found by
the MIP solver, we consider several values of the maximum
time allowed for each MIP resolution:
and 1000s. If the maximum time is reached, then the current
solution is considered—which is the best solution found,
without any optimality guarantee. The parameter is tuned
as explained in Section V.B when running optimization with

. Then, this value is also used for lower values
of .
In this section, we consider two types of sparse deconvo-

lution problems. The first problems are similar to those of
Section V.A, with and , and are therefore
slightly overdetermined. The second ones are underdetermined
problems, the most frequent case in sparse approximation. Such
problems may arise in high resolution sparse deconvolution.
Indeed, the true spike locations are generally continuous-valued
(e.g., representing times of flight of reflected waves), and
the model is a discrete approximation of a continuous
integral equation. The discretization step is usually chosen
equal to the sampling period of the data, thus is a discrete
convolution matrix. Such a choice may be too rough and can
lead to erroneous spike locations [42]. In order to improve the
model, one may consider an upsampled convolution model,
where both the impulse response and the sparse sequence are
upsampled by an integer factor, UF. Then, can be viewed as
the concatenation of UF discrete convolution matrices. Detail
about the corresponding matrix structure can be found in [42].
In the following, we consider , so that and

. Recall however that the intrinsic difficulty of sparse
deconvolution is mostly due to the ill-conditioned nature of
matrix and to the presence of noise, even in the overdeter-
mined case.
Fifty random instances are run with and

and dB, and sparsity levels
varying between 5 and 11. In the noise-free case, for the MIP

1We used T. Blumensath’s implementation of IHT (program AIHT.m) avail-
able at: http://www.personal.soton.ac.uk/tb1m08/sparsify/sparsify.html
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Fig. 2. Performance of classical sparse approximation algorithms and MIP optimization on sparse deconvolution problems, as a function of the signal-to-noise
ratio and of the size of the unknown vector. Overdetermined cases correspond to the standard deconvolution problem . Underdetermined
cases correspond to an upsampling factor such that and . Top row: exact recovery rate as a function of the sparsity level . Bottom
row: average spike distance to the true sequence as a function of the computation time. For each algorithm, the four marks correspond to , 7, 9 and 11. Note
the log-scale and the different scalings of the time axes. The notation corresponds to the MIP optimization strategy running in a maximum of
seconds. All results are averaged over 50 random realizations. Note that the four marks of MIP algorithms superimpose on the two first panels of the top row.

approach, only problems are relevant. Therefore, solu-
tions are computed via the optimization of (with threshold

), which was the most efficient computationally
(see Section V.C). All data and MIP optimization results of
this section are available online as supplementary multimedia
material.
In the noisy case, we consider , since the classical

methods rely on data misfit measures. Two quality indices
are computed for each simulated data set:
• the exact recovery rate, which is the average number of
simulations for which a given algorithm correctly locates
the support of the true sequence;

• the average spike distance between the estimated and
the true sequences. To this aim, a distance similar to that
used in neuroscience [43] is defined: both estimated and
true spike trains are convolved with a continuous-domain
Gaussian kernel (with standard deviation chosen equal to
the discretization step of the spikes). Then, the -norm
error between both signals is computed. Such a criterion
is less severe than the exact recovery rate if the esti-
mated spikes are slightly shifted with respect to the true
ones, and also gives more importance to spikes with high
amplitudes.

Note that with , the true sequence is a minimizer
of , with . Hence the expected exact recovery
rate for the MIP approach is 100%. On the other hand, in the
noisy case, the minimizer of may not be obtained on the
true support. Therefore, successful global optimization does not
always produce exact recovery.
Results are summarized in Fig. 2. The top row shows the av-

erage exact recovery rate as a function of the number of spikes,
and the bottom row plots the average spike distance to the true
sequence as a function of the CPU time.

Let us first focus on the noise-free case (left columns). Re-
call that, in the overdetermined noise-free case, the solution can
simply be computed by least squares. Simulations are still of in-
terest, however, in order to compare the algorithms in an ideal
and simple context. For all classical algorithms, the exact re-
covery rate is lower than 40% in the overdetermined case, and
decreases as the sparsity level increases (top row). Their per-
formance is still worse in the underdetermined case, where the
exact recovery rate is close to zero, except for the simplest prob-
lems . Their average spike distance to the true sequence
(bottom row) is logically lower for algorithms requiring more
computation time. We note in particular the bad results obtained
by IHT in the underdetermined case. Such bad performance of
IHT was already attested when theoretical optimality conditions
do not hold [14]. This is particularly true in the underdeter-
mined case, where the columns of are strongly correlated.
On the contrary, the MIP strategy correctly retrieves the sup-
port in nearly 100% of the noise-free instances, even with the
computation time limited to 1s. Actually, only one instance led
to erroneous support identification (for and ),
meaning that the solution was not found, even within 1000s.
The MIP approach also gives an average spike distance close
to zero, which means that both the supports and the amplitudes
of the solutions have been correctly recovered, even in the un-
derdetermined case, but with a larger computation time (from
0.03s to 0.2s for , and from 0.1s to 20s for ).
Note however that all classical algorithms are still much faster
on such relatively small problems (between s and s).
In the more realistic noisy case ( dB), the results

of the classical algorithms are very similar to those obtained
in the noise-free case, both in terms of exact recovery rate, av-
erage spike distance and CPU time. In contrast, the MIP per-
formance deteriorates, and the exact recovery rate quickly de-
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Fig. 3. Data (top-left) and deconvolution results obtained by different sparse
approximation algorithms in the overdetermined case ,
with dB and spikes. Circles locate the true spikes. On
the top-left panel, the dashed (respectively, solid) line represents the data

(respectively, the noise ). On the other panels, crosses show the ob-
tained minimizer and the solid line represents the residual . For
each algorithm, the residual norm and the average spike distance to the true se-
quence (ASD) are given.

creases as the number of spikes increases. Recall however that,
in the presence of noise, the minimizer of may not retrieve
the correct support: in the overdetermined case, for example,
the MIP solver returns the optimal solution in less than 1000s in
94% of the instances, whereas the average exact recovery rate is
much lower. However, it is still better than that of the classical
methods with s, and even much better if is in-
creased to 100s or 1000s. The MIP approach also outperforms
classical methods in terms of average spike distance, in partic-
ular if is high enough. In the overdetermined case, the av-
erage computing time ranges from 0.25s (for ) to 350s
(for ) and, as mentioned earlier, global optimality was
obtained in less than 1000s for most simulations. In the underde-
termined case, however, an optimumwas not proved to be found
within 1000s in 51 % of the instances, that mostly correspond
to the cases where and . This analysis corrobo-
rates the results in Section V.C: the presence of noise strongly
impacts the computing time of the MIP solver, and therefore it
impacts the quality of the solutions obtained by early stopping.
A typical data set and estimated sparse sequences are shown

in Fig. 3. It corresponds to the overdetermined case, the true
sequence is 9-sparse and dB. In this example, the
MIP approach is the only algorithm that correctly identifies the

support. Note that the resulting misfit at the MIP solution is
lower than the norm of the noise.

VII. EXPERIMENTAL RESULTS: RELEVANCE OF AND
-NORM DATA MISFITS

In this section, the impact of the data misfit measure (through
and norms) on the quality of the solution is studied,

as a function of the noise distribution—as motivated by the dis-
cussion in Section II.B. To this aim, data are simulated in a
manner similar to Section V.A and Fig. 1. The 7-sparse spike
sequence is fixed, and 200 noise realizations are drawn,
where noise samples are i.i.d. according to Gaussian, Laplacian
and uniform distributions, successively. The SNR here is set to
15 dB. The three error-constrained problems are consid-
ered here. We focus on these formulations because, in practical
cases, tuning the parameter requires less prior information
than tuning the parameter for or the parameter for

. Indeed, for any given noise distribution , the parameters
, can be naturally estimated from a common

statistical rule. More precisely, setting to a value satisfying
% amounts to considering that the

approximation error cannot be distinguished from noise with
probability 95%. Doing so, fair comparisons can be performed
between the solutions of the three problems .
These three problems share the same objective function,

hence they can be compared through their minimum value,
that is, the estimated number of spikes. In order to evaluate
the quality of the solutions, we also consider the support error

, where (respectively, )
equals 1 if (respectively, ), and 0 otherwise.
Optimization terminated in less than 1000s for all simulations.
Fig. 4 shows the distribution of the norms (left column)
and of the support errors (right column) for the three noise
distributions, and for the three data misfits.
We first note that the correct value of the norm is the most

frequently reached in all cases, except if an misfit is used
with Laplacian noise. When the estimated norm is wrong,
it is generally lower than the true value. Indeed, in most cases
(statistically, in 95% of the cases from the definition of ), the
noise realization satisfies . That is, the true sequence

satisfies the misfit-bound constraint. Thus, the threshold
allows a higher approximation error than the noise in the data,
which enables the possibility of solutions with fewer spikes.
Consequently, in such cases, . This is particularly
true if the noise distribution is heavy-tailed, where the -norm
of the noise samples may be much below the threshold , as
show the norm estimation statistics in the case of Laplacian
noise. On the other hand, if , then the true sequence
does not correspond to a solution of the optimization problem,
and . In such cases, one may have

. In our simulations, only very few instances led
to such an overestimation of the norm.
As it could be expected, the lowest support errors are

achieved by using the (respectively, and ) misfit in the
case of Gaussian (respectively, Laplacian and uniform) noise.
For each noise distribution, the corresponding misfit yields the
smallest average support error, and more frequently achieves
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Fig. 4. Estimation results obtained for the deconvolution of a 7-sparse se-
quence with dB, averaged over 200 noise realizations, in the case
of Gaussian (top), Laplacian (center), and uniform (bottom) noise distributions.
Error-constrained problems are considered, with (white),
(gray) and (black). Left: distributions of the norm of the solutions
for the three misfits. For each problem, indicates the average estimated

norm value. Right: distributions of the support errors. For each problem,
indicates the average support error between the estimated and the true

sequences.

correct support identification—even if, for Gaussian or Lapla-
cian noise, it is only obtained in a few cases (respectively,
15% and 11%). We also remark that switching from to
misfits with Gaussian noise only slightly degrades the support
identification performance, whereas optimization is computa-
tionally more efficient in the case—see Section V.C. Much
better support identification is achieved with uniform noise
combined with the misfit, which yields exact identification
in 90 % of the cases, whereas and data fitting achieve
much worse results. Note that with both and misfits, the

norm is correctly estimated in 98% of the cases. However,
support recovery performance is much worse in the case, as
some spikes are misplaced. Such superiority of data fitting
for uniform noise was already attested in [31] in a non-sparse
context.
Fig. 5 displays typical results obtained for one particular

realization of the noise process. For Gaussian (respectively,
Laplacian and uniform) noise distributions, one example is
shown such that (respectively, and ) data fitting yields
a solution with the most frequent support error obtained among

the 200 realizations. Note that, in each case, the solution shown
corresponds to one solution of the considered optimization
problem, that is, with the lowest norm that satisfies the
bounded- -misfit constraint. Recall indeed that, for most
values of threshold parameters , problems feature an
infinite number of solutions—see Section II.C. Consequently,
the presented solution is almost certainly not the solution with
minimal misfit. With Gaussian noise, the minimizer of
has the correct norm, but with two misplaced spikes, that
leads to a support error equal to 4. With the minimizer of ,
two spikes are slightly misplaced, and a third one is not de-
tected. The minimizer of also has the correct norm, but
its spikes are very badly located. For Laplacian noise, the most
frequent support error for the minimizer of is 3, which
corresponds to one misplaced spike and the non-detection of
one spike. Note that on the presented example, both minimizers
of and of identify the same support, whereas the
solution of features only four spikes (among which one is
erroneous). In the case of uniform noise, the solution of
correctly locates all spikes. The solution of misplaces one
spike and misses another one, and the solution of is still
worse, with three misplaced spikes—although with the correct
sparsity level.

VIII. DISCUSSION

In this paper, nine sparse approximation problems involving
the norm were considered and reformulated as mixed-in-
teger programs (MIP). Bounded-error, sparsity-constrained and
penalized formulations were studied, involving -norm data
misfit measures, for . Thanks to efficient dedi-
cated MIP solvers, we demonstrated that moderate-size sparse
approximation problems can be solved exactly, whereas exhaus-
tive search remains computationally prohibitive for such in-
stances. In particular, the use of a branch-and-bound strategy,
coupled with efficient cutting planes methods, allowsmost com-
binations to be discarded without being evaluated.
Computational costs were evaluated on simulated difficult

sparse deconvolution problems. Simulated data and corre-
sponding optimal solutions are made available as potential
benchmarks for evaluating other (potentially suboptimal)
sparse approximation algorithms2. Our experiments show that
misfit-constrained minimization of the norm is the most
efficient optimization formulation when associated with and

misfit measure. Conversely, the misfit measure is advan-
tageously used as an objective function, not as a constraint. All
CPU times increase with the number of non-zero components in
the true solution, and also with the amount of noise in the data.
Our encouraging numerical results tend to indicate however
that such optimization formulations may be appropriate for
tackling sparse approximation problems with several hundreds
of unknowns, as long as the solution is highly sparse and/or the
noise level is low. In particular, they do represent an alternative
to -norm-based and greedy methods for difficult estimation
problems with highly correlated dictionaries, both of which
are likely to fail. Simulations revealed, in particular, that exact

2Matlab implementations of the nine formulations are available at
http://www.irccyn.ec-nantes.fr/~bourguignon
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Fig. 5. Solutions of deconvolution problems with Gaussian (top), Laplacian (center) and uniform (bottom) noises, for one particular noise realization, with
dB. Circles locate the true spikes. On the left column, the dashed (respectively, solid) line represents the data (respectively, the noise ). On the three

other columns, crosses show the obtained minimizer and the solid line represents the residual .

solutions of problems almost always achieve perfect support
recovery for underdetermined noise-free problems, whereas
classical methods perform relatively badly. In the presence
of noise, the MIP solutions still outperform that of classical
methods (in both over- and underdetermined cases), although
the required computing time for obtaining exact solutions
dramatically increases.
The sparse approximation problem with data misfit

measure has been used in a huge quantity of works in signal
processing, statistics, machine learning, etc. To the best of our
knowledge, the methods presented in this paper are the only
guaranteed-optimality alternatives to exhaustive search that do
not rely on any strong assumption on the dictionary structure.
With the introduced MIP reformulations, we also proposed to
solve exactly less common sparse optimization problems based
on and misfits. Such problems may be of interest from
an informational point of view. Simulations illustrated this
point: choosing an misfit with (respectively,
and ) is relevant if the noise distribution is Gaussian
(respectively, Laplacian and uniform) as far as support identi-
fication is concerned. In particular, with uniformly distributed
noise, introducing an misfit constraint frequently achieves
correct support identification, which is not the case for any
other combination of data misfit and noise distribution.

Several points in the MIP reformulations could be consid-
ered in order to improve computational efficiency. First, as
acknowledged in previous works on MIP reformulations of
sparsity-based problems [24], [27], tuning the value, , in
the “big- ” reformulation impacts algorithmic performance.
For a given problem, statistical rules may be used in order
to infer reasonable values. Then, new constraints in the
optimization formulations may be added in order to reduce the
feasible domain. For example, in [27], an upper bound on the
norm of the solution sought is considered. Furthermore, many
signal processing problems naturally involve linear constraints
such as positivity or sum-to-one requirements. The proposed
MIP-based approaches can easily be adapted to such cases, for
which exact solutions can still be obtained. Adding such extra
constraints may also contribute to reducing the computational
time, whereas it generally penalizes the efficiency of classical
(convex or greedy) sparse approximation algorithms. One may
also consider directly the bi-objective optimization problem
with multi-criterion optimization methods [44] in order to
propose a whole range of trade-off (sparsity vs. data fitting)
solutions.
Global optimization of criteria involving structured sparsity

would also be worth being studied, where (possibly over-
lapping) subsets of coefficients are jointly zero or non-zero.
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Such problems are generally tackled by convex optimization
approaches involving mixed norms [45] or by extensions of
greedy algorithms [46]. Both suffer from similar limitations
than their scalar -norm relaxation and greedy counterparts,
as far as optimality with respect to the -based problem is
concerned. We believe that exact optimization of such problems
through MIP should also be possible for moderate-size prob-
lems. For example, MIP-like formulations of some structured
sparsity problems are shown in [25]—although the authors
finally resort to (inexact) continuous relaxation of the binary
variables—and in [47], where specific structured sparsity prob-
lems defined through totally unimodular systems allow exact
optimization in polynomial time.
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